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The method of constructing a family of Lyapunov functions to investigate the stability “in the small” of a perturbed motion, 
specified in the form of a law of motion of a mechanical system [I], which has also been used to construct generalized systems 
possessing an asymptotically stable programmed motion [2], is extended to generalized systems possessing asymptotically stable 
programmed constraints. Examples of the use of this procedure in the problem of stabilizing the programmed manifold of a 
manipulator on a moving base and to stabilize the programmed orientation of a pursuing body are presented. 0 2002 Elsevier 
Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Suppose the motions of a system are described by the equation 

A&,x,r)x = B&,x,r)+ M&,x,t)u (1.1) 

where A0 and MO are (n x n) and (n x r) matrices, x and BO are n-dimensional vectors and u is an 
r-dimensional vector. 

System (1.1) is more general compared with mechanical systems since, unlike them, the matrix& 
may depend on i, cannot be symmetric and positive-definite but must be non-singular. 

The problem entails finding expressions for the vector U(X, x, t) for which system (1.1) possesses 
programmed constraints 

CO,(x,r)=O, o&,x,t)=O (1.2) 

which are asymptotically stable “in the large” where ol, o2 are specified k- and m-dimensional vector 
functions and k + m s r. It is assumed that the vectors ol, 02, BO and the elements of the matrices 
Ao, MO are bounded and continuously differentiable functions in a certain bounded domain G(x, i) when 
t 3 to which includes the manifold (1.2) and a certain neighbourhood of it. 

Moreover, it is assumed that the determinants of the matrices MflT, (&_o~/~x)(&o~/&)~, (&o+) 
I$&/&)‘, which are Gram determinants, do not vanish in the domain G. 

Remark. The concept of a programmed constraint was introduced by the author in his doctoral dissertation (1972) 
and consists of the fact that a programme of motion can be specified as a law of motion or, in a more general 
form, as the manifold (1.2), which is analogous to the equations of the constraints imposed on the constrained 
mechanical systems. Unlike constrained mechanical systems, the phase states of the controlled system may or may 
not satisfy Eqs (1.2) since the controlled system, generally speaking, is a free system while conditions (1.2) are 
solely indicative of the fact that the manifold (1.2) must be integral for the equations of motion of the system. In 
order to achieve this aim, the active control forces acting on the system are chosen so that, when the initial states 
of the system satisfy (1.2), the system constructed behaves in exactly the same way as the constrained system on 
which constraints of the form of (1.2) have been imposed. The basic property of controlled systems and their 
similarity with constrained mechanical systems is contained in this. 
Note that a programme, which is specified in the form of a law of motion, is a special case of (1.2) when k = n. 

Below, the quantities o1 and 02 will be taken as measures of the deviation of the motions (1.1) from 
the manifold (1.2). 
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2. CONSTRUCTION OF A SYSTEM WITH CONTINUOUS CONTROL 

By virtue of (l.l), on differentiating the first equation of (1.2) twice with respect to time and the second 
equation of (1.2) once, we obtain 

0, =B,(i,x,r)+ 2 ( 1 
T 

M(i, x, t)u 

aw2 T 
0, = K,(X,x&+ - ( 1 ai M(.i, x, t)u (2.1) 

Here 

Multiplying both sides of Eqs (2.1) by the symmetric positive-definite k x k and m x m matrices 
A@, t) and N(x, t) with bounded, continuous and continuously differentiable elements in the domain 
G, we obtain 

A(X,t)Gj, =B(l.X,t)+Q,; B=AB,, Q, =A(&o,IaX)=Mu 

N(xJ)~.I, = K(i,X,t)+Q,; K = NK,. Qz = N(&o~ /&)‘Mu 

In the first equation of (2.2), instead of ti,, we make the substitution 

(2.2) 

y=o* -f(o,A, f(O,t)=O (2.3) 

wheref(oi, t) is an arbitrary k-dimensional vector function with bounded and differentiable elements 
which admit of an infinitely small upper limit. 

Multiplying the first equation of (2.2) scalarly by the vector y and the second equation of (2.2) by 
the vector &, and adding, we obtain 

=(o;Nw, +y’Ay) =y’ 

+o; 
I dN 

Q2 + K+2drco2 

If the vectors Q, and Q2 are chosen in the form 

Q, .Dy-~w,-B-A(~~y+A[($).f+f+~y 

1 dN 
Q2=-K---wo,-F,w, 

2 dt 

we obtain 

f$-y’Dy+(fTq +,:+, -o;fiw2 

(2.4) 

(2.5) 

(2.6) 

where D, Fi, Fz are symmetric, positive-definite matrices and V = CI.$VCJJ~ + yTAy + o~Flol is Lyapunov’s 
function, which is constructed to be positive-definite for ally, ol, w2, t in the domain G and which admits 
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of an infinitesimal upper limit. Consequently, when the function (fTF, + o]F1/2)01 is negative-definite, 
the right-hand side of equality (2.6) will be negative-definite with respect toy, ccl, 02 and, in this case, 
the programmed manifold (1.2) will be asymptotically stable in the domain G. In particular, when 

f = -ml, vectors (2.5) have the form 

Here, dAldt, dN/dt is assumed to be bounded in G in the same way as dfdt. 
Note that Qi and Qz are expressed in terms of the vector u by the equalities presented in (2.2), which 

can be represented by the single (k + m)-dimensional vector equation 

Qu=Q; R= 
A(h, / &)TA,‘M, 

N(ih, /ai>TiqM, (2.7) 

where SZ is a ((k + m) x r)-dimensional matrix and Q is a (k + m)-dimensional vector. 
The solution of Eq. (2.7) can be represented in the form of the sum of two components [3]: 

u, = s2Th and u,, where u, satisfies the equation slu, = 0 and h is a (k + m)-dimensional vector, which 
is found from the equation a, = Q in the form [3] 

h = $W)-‘Q 

Consequently, the component U, of the vector u is found in the form 

u, = W(QSF)-'Q (2.8) 

If the component u, of the vector u is equated to zero, the vector u will have the form (2.8) and have 
a minimum Euclidean norm [3]. In this case, by analogy with constrained mechanical systems, the 
constraints (1.2) can be regarded as ideal. 

3. ESTIMATE OF THE QUALITY OF THE TRANSIENT 

Integrating both sides of Eq. (2.6) with respect to time, we obtain 

(3.1) 

This equality is an integral criterion of the quality of the transient. Being free to choose the matrices 
D, F,, F2, N,A and the function f, it is possible to give the integrand and Lyapunov’s function the required 
structure with the necessary weight elements. 

When the actual numerical value of Vs is specified, the equation 

(3.2) 

in the (UC + m)-dimensional space tilO, olo, ozo describes an ellipsoid, the surface of which is the 
geometric locus of points possessing the following property. The integral criterion for the quality of 
the transient (3.1) holds for motions which have started out from them, and the estimate of the quality 
of the transient 

O” I[ '0 
“;F#2+yTDy-(fT~ +&)q]dt<~Vo 

holds for all initial values of tiio, olo, 020 within ellipsoid (3.2). 
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4. CONSTRUCTION OF A SYSTEM WITH BANG-BANG CONTROL 

Suppose system (2.2) satisfies the following conditions in the domain G 

Q/“>IG,u’I, i=l,2 ,..., k; Qj2)>1Gj2)1, j=l,2 ,..., M 

where G$‘) and Gy) are, respectively, the elements of the vectors 

which occur in expression (2.4), and G!‘) and GP) are the moduli of the elements of the vectors Qi and 
Q2 in the case of bang-bang control. 

Then, the possibility of bang-bang control 

Qii =-Q,“‘signyi, i= I,2 ,..., k 

Q2j =-Qj*‘signo2j. j=1,2 ,..., m (4.1) 

follows from (2.4). 
Here, the function V1 = w~Nw2 + yT_4y and, together with it, the vectors o2 and y vanish after a finite 

time interval [4]. This means that, after this time interval, the phase state of the system is brought into 
the manifold 

0, -f(o,,t)=O, 02 =o (4.2) 

If the functionf(w,, t) is chosen in such a way that the solution w1 = 0 of the first equation of (4.2) 
is exponentially stable in G, then the phase state of system (2.1) will contract with time to the 
programmed manifold (1.2). 

It now remains to express the vector u in terms of the quantities (4.1). To do this, the vectors Q, and 
Q2, occurring in Eq. (2.7) must be replaced by the vectors Q\, Qi with the elements 

Q;i =-Q,“‘signy,, i=1,2 ,..., k 

Q~j =-Qj*‘sign~~~, j=1,2 ,..., M 

respectively. 
In this case, Eq. (2.7) takes the form 

and the required Eq. (2.8) which has the minimum Euclidean norm, is expressed in the form 

u = i2’(CiCl’)-‘Q’ 

Note that the e?ression for the component U, of the control u can be found in [5] in the form 
U, = [,?.3 - S2T(SJ&Y)- BJW, where E is the identity matrix and W is an arbitrary vector function, 

5. EXAMPLES 

Stabilization of the programmed manifold of a manipulator on a moving base. Consider a manipulator, 
consisting of II rectilinear elements TV (v = 1,2, . . ., n), located on a moving base [6]. Each element TV 
rotates relative to the preceding element TV _ 1 around a circular cylinder 0, _ i. We place the centre of 
the gripping device at the point 0, of the last element T, and we specify the plane of the gripping device 
to be the plane of the unit vectors eP and kp. 
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We shall assume that rotation of the element TV around the hinge 0, _ 1 is achieved by means of an 
electric motor, placed with its reducing gear train at this point. The first element of the manipulator is 
connected to the point 0 of the base of the manipulator. The position of the body and base of the 
manipulator relative to a fixed system of coordinates ocprl< is determined by the law of motion re(t) of 
the point 0 and by the three Euler angles. 

We impose two requirements in the programme for the motion of the gripping device: the motion 
of the centre of the gripping device relative to the base must obey the specified law 

000” = L(r); L(t) = L,(t) - q)(t) (5.1) 

where Ll(t), ro(t) are specified functions and the plane of the gripping device must be orthogonal to 
the vector eo, that is, 

eie, = 0, kieo = 0 (5.2) 

If the vector OsO,, is expressed in terms of the vectors I, = OV_iOV, then condition (5.1) takes the 
form 

i I, -L(f) = 0 
V=l 

The motions of the manipulator are specified by Lagrange’s equations 

d aT aT -_ ---Q(p)--Ci+M,u 
dt ai ax 

(5.3) 

(5.4) 

where x is an n-dimensional vector of the generalized coordinates and the angles of rotation 
cp,(u = 1, . ..) n) of its elements, u is the n-dimensional vector of the control signals, Q(p) is the vector 
of the generalized gravitational forces, T is the kinetic energy of the manipulator 

C = diag(c,kf,c2ki 2 
,...,c,k,); MO =diag(a,k,,a2k2 ,..., a,,k,) 

c, the coefficients of resistance on the shaft of the motors, k, are the transmission numbers of the reducing 
gear trains and a, are the coefficients of proportionality between the control moments of the motors 
and the control signals u, 

Equation (5.4) can be represented in the form of (1.1) 

A,(x,r)i = B,(i,x,r)+ M,,u 

where 

(5.5) 

B _ pJoi+ 
0-- 

2 ax 

Starting out from requirements (5.3) and (5.2), we will represent the programmed manifold (1.2) in 
the form of a five-dimensional vector 

0(x, t) = 0 (5.6) 

with elements 

wi=k~[~,fve,-L(r)], i=1,2,3; o,=eTpeO, w,=k7,e, (5.7) 

where kj are the unit vectors for the axes of the system of coordinates ognc and e, are the unit vectors 
of the vectors I,. 

Differentiating equalities (5.7) twice with respect to t using Poisson’s formulae 
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&=(-o+;, o;I)xk, 
where 0; =i,,j,, and j, are the unit vectors of oh, we obtain Eq. (2.1) in the form [6] 

ti = A,TA,‘B, + $i - 2,, + A;&‘Mu 

Here Ai is an n x 5 matrix with elements 

ki, i= 1.2.3 

adv = (j, x ep )‘eo. ~5, = Cj, x kpjTeo 

CO is a vector with elements 

CP = i(t)- ~ (00 XI,) Tki) i=1,2,3 
v=1 1 

c,” = -(q, x ep)‘e,-, - el,i,, ci = -(a,, x kp)‘eO - k& 

and o. is the angular velocity of the base.. 
Multiplying (5.8) by the symmetric, positive-definite 5 x 5 matrixA(x, t), we obtain 

A&= B(i,x,t)+Q 

where 

B = A(A,rAoB,, + $i - too>, Q = AA;Mu, M = A,‘M, 

Equation (5.9) is the first of the equations of (2.2). 
Consequently, Eq. (2.7) for determining the vector u has the form 

AA:Mu = Q 

where 

(5.8) 

(5.9) 

(5.10) 

D and F are arbitrary symmetric, positive-definite matrices and f(o, t) is an arbitrary vector function 
with bounded and differentiable elements, which is chosen in such a way that the function (fTF + d~~)o 
is negative-definite. 

The solution of Eq. (5.10) can be represented in the form of (2.8) 

u = RT(Raf )--I Q; $I = AA; M 

In this case, the Euclidean norm of the vector of the control u will be a minimum. 
When necessary, a bang-bang control of the system can be constructed using the algorithm presented 

in Section 4. 
Note that, in this case, the quality factor of the transient (3.1) has the form 



The construction of systems with asymptotically stable programmed constraints 803 

Stabilization of the programmed orientation of a pursuing body. Consider a rigid body rigidly associated 
with the fixed system of coordinates cryz. We construct the principal vector of the control forces I& in 
such a way that the centre of mass of the body c moves along the pursuit curve behind the point o, 
which is being pursued, when it moves in an arbitrary way ro(t) relative to the inertial system of 
coordinates o+rylzl [7]. Here, the vector of the control moments Ui must be such that one axis of the 
body, cz, for example, tends asymptotically to occupy the direction co. Consequently, the programmed 
orientation of the body in this case can be specified by the expressions 

W; =k,.(r,-r)=O, Oi2=ki.V=0, i=l,2 (5.11) 

where kI, k2 are the unit vectors of the axes cx and cy, (.) is the sign of a scalar product, r is a radius 
vector and v is the vector of the absolute velocity of the centre of mass of the body. 

It is well known that the motion of the centre of mass in the inertial system of coordinates olxrylzl 
and the rotational motion of the body about the centre of mass in the axes of the fixed system of 
coordinates cryz are described by the equations 

f;=(loxo)+M,+iI, 

mir=f+ii* (5.12) 

where I is the inertia tensor of the body at the point c, o(p, q, r) is the instantaneous angular velocity 
of the body,p, q and r are the projections of o onto the CT, cy and cz axes, m is the mass of the body, 
MI is the moment of the specified forces with respect to the centre of mass c, f is the principal vector 
of the specified forces, Iii is the principal moment of the control forces with respect to c and U2 is the 
principal vector of the control forces. 

We represent Eq. (5.12) in the form 

&=I-‘[(hxw)+M,]+u,; i=flm+q 

II, = di,, u2 =i&!m (5.13) 

The problem can now be formulated as follows: it is required to construct analytic expressions for the 
vectors u1 and u2 in such a way that the manifold (5.11) is a stable programmed manifold of system (5.13). 

The solution of the problem is as follows. 
Differentiating expression (5.11) with respect to time, we obtain, using Eqs (5.13), 

where 

B; =c;r-‘[(hx~)+M,]-k; ‘f+(rg-r)‘[OX(WXki)]+(i’o-V)‘(wXki)+~~k; 
m 

K; = k$f +vT(oxk;) 
m 

ci = ki x(ro-r) 

‘i 
Q, = cfu, - k;u,, 0; = kifu2 

and r, v, h, Ciy o, MI, f, ul, u2 are column vectors. 
The system of equations (5.14) can be represented in the vector form 

. . 
o,=B,+& k2=K,+02 

where 

(5.14) 

(5.16) 
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Multiplying Eqs (5.16) by the sign-definite, symmetric matricesA and N, we obtain 

A&, = B+Q,, NC& = K+Q2 (5.17) 

where 

B=AB,, K=NK,, Q,=A& Q,=N& (5.18) 

Taking the notation of (5.18) into account, expressions (5.15), which contain the required vectors ui 
and u2, can be represented in the form 

s2,u = A-IQ,, i&u = N-IQ2 (5.19) 

where 

Q, /I c” c’2 c’3 -4, -42 -43 = c21 c22 ‘23 -42, 422 -k23 II 

I 0 0 0 R, 41 42 = 43 II (5.20) 

o o o k21 k22 k23 

cil, ci2, cis are the elements of the vectors ci, and kii, ki2 and ki3 are the elements of the vectors ki. 
In Eq. (5.17) instead of wl, we make the substitution 

y = 0, - f(o, , t), f(O, t> = 0 (5.21) 

wheref(ot, t) is an arbitrary two-dimensional vector function with bounded and differentiable elements, 
which admit of an infinitesimal upper limit. 

Multiplying the first equation of (5.17) scalarly by the vectory and the second equation by the vector 
o2 and adding, we obtain Eq. (2.4). 

If the vectors Q, and Q2 are chosen in the form (2.5), we then obtain Eq. (2.6). 
Note that Q, and Q2 are expressed in terms of the 6-dimensional vector u by Eqs (5.19), which can 

be represented by a single 4-dimensional vector equation of the form (2.8) where Sz is a 4 x 6 matrix 
of the form 

where Sz,, CJ2 are the matrices (5.20). 
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